Frequently Asked Questions about Agentic Artificial Intelligence

· 4 min read
Frequently Asked Questions about Agentic Artificial Intelligence

What is agentic AI and how does this differ from the traditional AI used in cybersecurity? Agentic AI refers to autonomous, goal-oriented systems that can perceive their environment, make decisions, and take actions to achieve specific objectives. Agentic AI is a more flexible and adaptive version of traditional AI. In  ai security standards , agentic AI enables continuous monitoring, real-time threat detection, and proactive response capabilities.

What are some real-world examples of agentic AI being used in cybersecurity today? Examples of agentic AI in cybersecurity include:

Autonomous threat detection and response platforms that continuously monitor networks and endpoints for malicious activity
AI-powered vulnerability scans that prioritize and identify security flaws within applications and infrastructure
Intelligent threat intelligence systems that gather and analyze data from multiple sources to provide proactive defense against emerging threats
Autonomous incident response tools that can contain and mitigate cyber attacks without human intervention
AI-driven fraud detection solutions that identify and prevent fraudulent activities in real-time
How can agentic AI help bridge the skills gap in cybersecurity and alleviate the burden on security teams? Agentic AI can help address the cybersecurity skills gap by automating many of the repetitive and time-consuming tasks that security professionals currently handle manually. Agentic AI systems free human experts from repetitive and time-consuming tasks like continuous monitoring, vulnerability scanning and incident response. Additionally, the insights and recommendations provided by agentic AI can help less experienced security personnel make more informed decisions and respond more effectively to potential threats.  Agentic AI can help organizations meet compliance and regulatory requirements more effectively by providing continuous monitoring, real-time threat detection, and automated remediation capabilities. Autonomous agents ensure that security controls and vulnerabilities are addressed promptly, security incidents are documented, and reports are made. The use of agentic AI raises new compliance concerns, including ensuring transparency, accountability and fairness in AI decision-making, as well as protecting privacy and security for data used to train and analyze AI.  To successfully integrate agentic AI into existing security tools and processes, organizations should:

Assess the current security infrastructure to identify areas that agentic AI could add value.
Create a roadmap and strategy for the adoption of agentic AI, in line with security objectives and goals.
Ensure that agentic AI systems are compatible with existing security tools and can seamlessly exchange data and insights
Provide training and support for security personnel to effectively use and collaborate with agentic AI systems
Create governance frameworks to oversee the ethical and responsible use of AI agents in cybersecurity
What are some emerging trends in agentic AI and their future directions? Some emerging trends and directions for agentic artificial intelligence in cybersecurity include:

Increased collaboration and coordination between autonomous agents across different security domains and platforms
Development of more advanced and contextually aware AI models that can adapt to complex and dynamic security environments
Integration of agentic AI with other emerging technologies, such as blockchain, cloud computing, and IoT security
To protect AI systems, we will explore novel AI security approaches, including homomorphic cryptography and federated-learning.
Advancement of explainable AI techniques to improve transparency and trust in autonomous security decision-making
How can agentic AI help organizations defend against advanced persistent threats (APTs) and targeted attacks? Agentic AI provides a powerful defense for APTs and targeting attacks by constantly monitoring networks and systems to detect subtle signs of malicious behavior. Autonomous agents are able to analyze massive amounts of data in real time, identifying patterns that could indicate a persistent and stealthy threat. By learning from past attacks and adapting to new attack techniques, agentic AI can help organizations detect and respond to APTs more quickly and effectively, minimizing the potential impact of a breach.

What are the benefits of using agentic AI for continuous security monitoring and real-time threat detection? The following are some of the benefits that come with using agentic AI to monitor security continuously and detect threats in real time:

24/7 monitoring of networks, applications, and endpoints for potential security incidents
Prioritization and rapid identification of threats according to their impact and severity
Security teams can reduce false alarms and fatigue by reducing the number of false positives.
Improved visibility of complex and distributed IT environments
Ability to detect novel and evolving threats that might evade traditional security controls
Security incidents can be dealt with faster and less damage is caused.
How can agentic AI improve incident response and remediation processes? Agentic AI can significantly enhance incident response and remediation processes by:

Automatically detecting and triaging security incidents based on their severity and potential impact
Contextual insights and recommendations to effectively contain and mitigate incidents
Orchestrating and automating incident response workflows across multiple security tools and platforms
Generating detailed reports and documentation to support compliance and forensic purposes
Learning from incidents to continuously improve detection and response capabilities
Enabling faster, more consistent incident remediation and reducing the impact of security breaches
What are some of the considerations when training and upgrading security teams so that they can work effectively with AI agent systems? To ensure that security teams can effectively leverage agentic AI systems, organizations should:

Give comprehensive training about the capabilities, limitations and proper usage of agentic AI tools
Encourage security personnel to collaborate with AI systems, and provide feedback on improvements.
Create clear guidelines and protocols for human-AI interactions, including when AI recommendations should be trusted and when issues should be escalated to human review.
Invest in upskilling programs that help security professionals develop the necessary technical and analytical skills to interpret and act upon AI-generated insights
To ensure an holistic approach to the adoption and use of agentic AI, encourage cross-functional collaboration among security, data science and IT teams.
How can organizations balance?

the benefits of agentic AI with the need for human oversight and decision-making in cybersecurity? To strike the right balance between leveraging agentic AI and maintaining human oversight in cybersecurity, organizations should:

Establish clear roles and responsibilities for human and AI decision-makers, ensuring that critical security decisions are subject to human review and approval
Use AI techniques that are transparent and easy to explain so that security personnel can understand and believe the reasoning behind AI recommendations
Develop robust testing and validation processes to ensure the accuracy, reliability, and safety of AI-generated insights and actions
Maintain human-in-the-loop approaches for high-stakes security scenarios, such as incident response and threat hunting
Encourage a culture that is responsible in the use of AI, highlighting the importance of human judgement and accountability when it comes to cybersecurity decisions.
Regularly monitor and audit AI systems to identify potential biases, errors, or unintended consequences, and make necessary adjustments to ensure optimal performance and alignment with organizational security goals